반응형

출처 

http://chrisalbon.com/python/pandas_create_column_with_loop.html

For 루프로 Pandas 열 만들기


사전준비

import pandas as pd
import numpy as np

데이터프레임 예시 만들기

raw_data = {'student_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'test_score': [76, 88, 84, 67, 53, 96, 64, 91, 77, 73, 52, np.NaN]}
df = pd.DataFrame(raw_data, columns = ['student_name', 'test_score'])


학점을 할당하기 위한 함수 만들기

# 데이터를 저장할 list(리스트)를 만듭니다. grades = [] # 열에 추가할 각 행을 For로 순회합니다, for row in df['test_score']: # 이 값보다 크면, if row > 95: # 'A' 학점으로 list에 추가합니다. grades.append('A') # 아니고, 이 값보다 크면, elif row > 90: # 'A-' 학점으로 list에 추가합니다. grades.append('A-') # 아니고, 이 값보다 크면, elif row > 85: # 'B' 학점으로 list에 추가합니다. grades.append('B') # 아니고, 이 값보다 크면, elif row > 80: # 'B-' 학점으로 list에 추가합니다. grades.append('B-') # 아니고, 이 값보다 크면, elif row > 75: # 'C' 학점으로 list에 추가합니다. grades.append('C') # 아니고, 이 값보다 크면, elif row > 70: # 'C-' 학점으로 list에 추가합니다. grades.append('C-') # 아니고, 이 값보다 크면, elif row > 65: # 'D' 학점으로 list에 추가합니다. grades.append('D') # 아니고, 이 값보다 크면, elif row > 60: # 'D-' 학점으로 list에 추가합니다. grades.append('D-') # 아니면, else: # 'F' 학점을 추가합니다. grades.append('Failed') # list(리스트)로부터 'grades'열을 추가합니다. df['grades'] = grades

# 새로운 dataframe(데이터프레임)을 봅니다. df

student_nametest_scoregrades
0Miller76C
1Jacobson88B
2Ali84B-
3Milner67D
4Cooze53Failed
5Jacon96A
6Ryaner64D-
7Sone91A-
8Sloan77C
9Piger73C-
10Riani52Failed
11AliNaNFailed


반응형

+ Recent posts